
Network Table Lookup
Efficiency scheme

Fri, Jul 5, 2002
Introduction

Most modern network communication is based on Internet Protocols. The Linac/IRM 
front-end system code supports the usual IP, ARP, ICMP, and IGMP protocol standards, and 
it supports the User Datagram Protocol (UDP) transport layer. Inside the system code, as well 
as within each local or page application, a form of node number is used when referring to 
any network entity. In order to relate to a UDP socket, a “pseudo node number” (PNN) is 
fabricated that refers to an entry in the IPARP table, each element of which holds a 6-byte 
physical address, IP address, and a pointer to an allocated block of memory that contains up 
to 15 active UDP port numbers. This table thus serves the needs of an ARP cache, but also the 
needs of retaining the source UDP port numbers. To be more specific, the form of a 16-bit 
pseudo node number is as follows:

Bits Size Meaning
15–12 4 value 6 or 0xE indicates a pseudo node number
11–4 8 Index into IPARP table of 16-byte entries
3–0 4 Index to list of active port numbers in Port number block

Given a pseudo node number, then, it is easy to find the corresponding IP address and UDP 
port number that comprise what is normally referred to as a UDP socket. When a PNN is 
passed to lower level network routines, a simple IPARP table lookup is enough to find the 
information needed to build the UDP datagram for transmission.

On the reception side, things are not so simple. When a UDP datagram is received, one starts 
with the information contained within the network frame, which includes the source IP 
address and UDP port number. One of the early steps the system makes is constructing a 
relevant pseudo node number for referring to the node and UDP port number that sent this 
datagram. (In the case of a request, one may soon have to deliver a reply, for which a PNN is 
needed.) Traditionally, this has been accomplished by searching the IPARP table for a match 
on the IP address, then searching the list of UDP port numbers active from that node in the 
associated Port number block.

Two other forms of node numbers are supported by the system. One form is a “native” node 
number (NNN), which is assigned uniquely to every node that runs the system software. These 
numbers are in the range 0x0500–0x07FF. Today, by convention, most “operational” front-
ends use numbers in the 06xx range, whereas nodes used primarily for testing use numbers 
in the 05xx range. Almost no nodes now use the 07xx range, which was used more 
extensively years ago for the DZero experiment front-ends during Run I.

Communication with native node numbers is also supported by the system code. This allows 
a higher level of support for communications that is not even dependent upon the IP 
protocols. The two particular protocols that are supported in this way are the Classic and 
Acnet protocols. Each protocol is supported by server code that listens to the two UDP ports 
assigned for these protocols, specifically, 6800 for Classic and 6801 for Acnet. Within the 
front-end code, a Classic message is transmitted by the system support from the Classic port, 
and an Acnet message is sent from the Acnet port.

Another type of node number is supported by all Acnet protocol nodes, including Acnet 
consoles and other Acnet client nodes. This type is referred to here as an Acnet node number 
(ANN). All of these node numbers use IP communications with the Acnet protocol. Every ANN, 
then, has a corresponding IP address, and every Acnet front-end needs to obtain a copy of 
the Acnet Trunk tables that are merely a list of IP addresses indexed by Acnet node numbers. 



The reserved range of Acnet node numbers is 0x0900–0x10FF. At this time, the range in 
actual use is 0x0900–0x0BFF.

The system code supports communications with a PNN, NNN, or ANN. Switching between these 
various forms and the related IP addresses often involves table searching. Searching the 
IPARP table to form the proper PNN was described above. But when the target node is 
characterized by a NNN, the IP Node Address Table (IPNAT) must be searched. This table is 
really a kind of DNS cache that each node maintains. A new entry is placed in this table the 
first time that the front-end ever targets a given NNN. (This table survives resets and power 
outages, because it resides in nonvolatile memory.) The first time it is used, the DNS is 
queried to obtain the IP address, the DNS reply serving to populate the entry. Once 
populated, periodic (12-hour) queries to the DNS serve to keep the entry reasonably up-to-
date. (These periodic queries are staggered so as not to place a high load on the DNS at one 
time.) All of this logic is managed by the local application LOOPDNSQ.

Another time that a search of the IPNAT is required is upon reception of a reply message to a 
server-style Classic data request. The original Classic request is described in terms of 
“idents,” which include an NNN and an index. (A simple example is an analog channel ident 
that includes a NNN and a channel number local to that node.) A server that multicasts such a 
request can anticipate replies from as many unique nodes as are represented in the idents of 
the request. In order to match the replying node with an NNN from which a reply is 
expected—so the data can be properly captured into the eventual composite reply buffer for 
transmission to the original requester—the NNN of the incoming datagram must be found, 
which requires a search of the IPNAT for a match on the IP address.

When a target node is specified as an ANN, the local copy of the Trunk table provides the 
needed IP address, in this case without searching. But when a reply is to be sent to a PNN 
using the Acnet protocol, the Trunk table must be searched to discover the appropriate ANN to 
use in the Acnet header portion of the message.

How bad can such searching be? The size of the IPNAT may be short, or not so short, 
depending on the history of that particular node’s network communications. The Trunk table 
size is fairly fixed, as it includes IP addresses for all existing Acnet nodes. The IPARP table 
size depends upon the number of nodes with which the node has communicated recently. 
(Entries are freed after inactivity of about an hour or so.) Its maximum size is about 250 
entries, although a more typical size might be only 10–20% of that.

It was thought that modern processors are fast enough so that whatever table searches are 
needed should not be too costly. The latest version of the system code runs with a 233 MHz 
PowerPC processor, which is good, but its nonvolatile memory has an approximate access 
time of 1 µs, which is not so good. The CPU has a RISC architecture, so one can think of a 
single access to nonvolatile memory costing some 200-odd CPU wait states. This elevated the 
concern about time spent searching nonvolatile network tables.

The purpose of this note is to describe a new scheme for eliminating node number and IP 
address searches.

Origin of 16-bit node numbers
The original motivation for using a 16-bit node number came from the Classic data 

request protocol design. When making a request for specific data of any kind, the specificity 
is defined in terms of an ident, which is most often 4 to 6 bytes in length, but in all cases 
includes a 16-bit node number in the first two bytes. (This design was used to support access 

Network Table Lookup p. 2



between front-ends. Any front-end can both issue requests and send replies in answer to 
requests received; both client and server software is included.) The protocol supports 
requests that span multiple nodes, in which the nodes involved are those whose (native) 
node numbers are included in the ident list used in the request. When a request is issued 
from one node, in which data from several nodes is sought, it is multicast, so that all eligible 
nodes receive the request at once. Each node inspects the request to discover whether any of 
the idents refers to itself. If any of the idents is local, then that node accepts the request and 
initializes itself to return the requested data (its own portion only) at the requested rate to the 
requesting node.

Back at the requesting node, the request message that was multicast was carefully analyzed 
ahead of time, so that the requesting node knows what data it should expect to receive in 
reply, and from which nodes. As those expected replies are received, it uses a “request map” 
to spread the reply data appropriately into the ultimate composite reply buffer. Most often, 
such requests are issued on behalf of a client node, such as a PC, Macintosh, or unix box, in 
which the requesting node described here is called a “server” node. Although this 
description focuses on the Classic protocol, the same server support also exists to support the 
Acnet protocols, in which case the requests are most often issued on behalf of an Acnet 
console. In either case, the original client node has an easy job: build the request including all 
the relevant idents in the appropriate protocol, send the request to a server node, and 
anticipate the consequent composite replies that are returned by the server node. The 
complexity of sorting out the separate replies arriving at the server node from the actual 
source nodes is eliminated, as all that is handled by the server node. But the potentially high 
traffic of these replies means that the server node must frequently translate from IP address 
and port number to PNN, and also to a NNN, in order to consult the request map.

Table lookup scheme
A new scheme has been designed to save time when looking up IP address and node 

number relationships. The first attempt at such support was done as a pilot study in the IRM 
code, although these MVME-162-based nodes do not have slow access to nonvolatile 
memory. It supported efficient lookups for all of Fermilab’s Class B internet. It was relatively 
simple, but it required a total of 640K bytes to house the needed lookup tables. The second 
attempt is designed, at the cost of increased complexity, to fit within a target memory budget 
of 64K bytes. In addition, it not only supports the local Class B internet addresses, but it also 
supports IP addresses that are outside that range.

Within the new 64K byte structure, 50K bytes are used to house up to 100 subnet blocks, each 
of which contains 64 entries of 8-bytes each. The 64 entries support up to 4 related node 
numbers for 64 consecutive IP addresses. Since 6 bits is enough to cover the 64 consecutive 
addresses, the subnet size corresponds to 26 bits of the 32-bit IP address. 

Subnet blocks are allocated as needed to contain the node numbers of interest. A subnet block 
is needed when a nonzero node number must be associated with an IP address. Once a 
subnet block is allocated, the same block can be used for as many as 63 other IP addresses 
that share the same upper 26 bits.

At initialization time, the contents of the nonvolatile memory tables IPNAT and TRUNK are 
reviewed to help initialize the subnet tables. The IPNAT keeps native node numbers that 
relate to IP addresses; the TRUNK table keeps Acnet node numbers that relate to IP 
addresses. At the time of this writing, node0509, which maintains a rather large IPNAT, uses 
about 64 subnet blocks as a result of this initialization process. After that, most new needs for 
subnet block allocation will occur as a result of communication with IP addresses unknown 

Network Table Lookup p. 3



to the IPNAT or TRUNK tables. When a new entry of a foreign node is entered into the 
IPARP table cache, a subnet block may be allocated. Without further communication from 
such a node, the subnet block will be freed after an hour or so. The new scheme logs such 
occurrences as a matter of diagnostic interest.

The mechanism for allocating subnet blocks involves a check of the IP addess in question 
against the local IP address. If the upper 16 bits match, the IP address is considered to be part 
of the local Class B internet. For such a case, a 1024-member array of allocated subnet block 
numbers, each in the range 1–100, is kept, indexed by the next 10 bits of the IP address. If the 
given IP address has an allocated block, then the least-significant 6 bits of the IP address are 
used to index into the allocated block to find the relevant 4-word entry.

But suppose the upper 16 bits of the IP address did not match the local IP address. This is 
referred to as an external subnet, for which a table of 64 possible 26-bit external subnet masks 
is kept. This table must be searched for a match against the upper 26 bits of the given IP 
address. If a match is found, then a parallel table of external subnet block numbers is 
referenced in the same way that was done for the local subnets. A block number obtained in 
this way is then used in the same way, indexing via the low 6 bits of the IP address.

Whether the local or external case, suppose there is no allocated block for the subnet in 
question. In that case, one must be allocated, assuming it is necessary to store a nonzero node 
number therein. An array of 100 counts of active entries, indexed by subnet block number, is 
maintained to facilitate discovery of an unused subnet block. On finding a zero entry in this 
table, its index is an unused block number that can be allocated. The act of storing a nonzero 
node number in one of the entries of the new subnet block will increment the count so that 
the new block will appear unavailable for future allocation. Likewise, any time that a node 
number is removed from the table entry, and that removal results in that 8-byte entry 
becoming all zero, the count of active entries for that subnet block is decremented. Once such 
decrementing reaches zero, the subnet block is freed and is available for future allocation as 
needed. Note that, by definition, such a freed block is all zero.

Returning to the original purpose for the new scheme, that of minimizing the time to lookup 
a node number given an IP address, here is how that function typically proceeds. A check is 
made of the IP address against the upper 16 bits of the local node IP address. This will very 
likely result in a match, so that the IP address is local. Using the next 10 bits of the address as 
an index, lookup the block number that has been allocated for this subnet, which leads to the 
subnet block itself, where the low 6 bits of the IP address are used to index to the 8-byte entry 
that holds up to 4 related node numbers for the given IP address. In the case that no allocated 
block exists, the resulting node number sought is simply zero. There is no reason to allocate a 
subnet block unless it is desired to store a nonzero node number of some type in its 8-byte 
entry. Two error conditions can occur for a table lookup operation. The first is when an IP 
address is found for which no subnet block is allocated, and no subnet block is available for 
allocation. The second is when an external IP address is found not in the list of known 
external subnets, and the list is full. In either error case, the procedure should be to use the 
old method that required a search of the network table in question. It is not expected that this 
will happen at all frequently in practice.

A document describing the evolution of the scheme is called “Table Lookup Improvement.”
A document describing the communications between local applications and the system code 
vis-a-vis changes needed for IPNOD table entries is called “Table Lookup for IP Addresses.”
A document detailing the changes required to the system code to support the table lookup 
scheme, plus preliminary timing results, is called “Network Table Changes.”

Network Table Lookup p. 4


